Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Healthc Eng ; 2021: 3514821, 2021.
Article in English | MEDLINE | ID: covidwho-1595649

ABSTRACT

The World Health Organization (WHO) recognized COVID-19 as the cause of a global pandemic in 2019. COVID-19 is caused by SARS-CoV-2, which was identified in China in late December 2019 and is indeed referred to as the severe acute respiratory syndrome coronavirus-2. The whole globe was hit within several months. As millions of individuals around the world are infected with COVID-19, it has become a global health concern. The disease is usually contagious, and those who are infected can quickly pass it on to others with whom they come into contact. As a result, monitoring is an effective way to stop the virus from spreading further. Another disease caused by a virus similar to COVID-19 is pneumonia. The severity of pneumonia can range from minor to life-threatening. This is particularly hazardous for children, people over 65 years of age, and those with health problems or immune systems that are affected. In this paper, we have classified COVID-19 and pneumonia using deep transfer learning. Because there has been extensive research on this subject, the developed method concentrates on boosting precision and employs a transfer learning technique as well as a model that is custom-made. Different pretrained deep convolutional neural network (CNN) models were used to extract deep features. The classification accuracy was used to measure performance to a great extent. According to the findings of this study, deep transfer learning can detect COVID-19 and pneumonia from CXR images. Pretrained customized models such as MobileNetV2 had a 98% accuracy, InceptionV3 had a 96.92% accuracy, EffNet threshold had a 94.95% accuracy, and VGG19 had a 92.82% accuracy. MobileNetV2 has the best accuracy of all of these models.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Child , Humans , Pandemics , Pneumonia/diagnosis , SARS-CoV-2
2.
J Healthc Eng ; 2021: 1002799, 2021.
Article in English | MEDLINE | ID: covidwho-1571444

ABSTRACT

Deep learning has emerged as a promising technique for a variety of elements of infectious disease monitoring and detection, including tuberculosis. We built a deep convolutional neural network (CNN) model to assess the generalizability of the deep learning model using a publicly accessible tuberculosis dataset. This study was able to reliably detect tuberculosis (TB) from chest X-ray images by utilizing image preprocessing, data augmentation, and deep learning classification techniques. Four distinct deep CNNs (Xception, InceptionV3, InceptionResNetV2, and MobileNetV2) were trained, validated, and evaluated for the classification of tuberculosis and nontuberculosis cases using transfer learning from their pretrained starting weights. With an F1-score of 99 percent, InceptionResNetV2 had the highest accuracy. This research is more accurate than earlier published work. Additionally, it outperforms all other models in terms of reliability. The suggested approach, with its state-of-the-art performance, may be helpful for computer-assisted rapid TB detection.


Subject(s)
COVID-19 , Deep Learning , Tuberculosis , Humans , Neural Networks, Computer , Reproducibility of Results , Tuberculosis/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL